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Abstract: The shelf-life of a drug is usually determined by fitting the assayed values of drug potency versus time to a linear 
least-squares model. In least-squares models, the parameters are estimated by minimizing the sum of squares of the 
residuals. Shelf-life is estimated as the time corresponding to the intersection point of the fitted line and the minimum 
acceptable per cent or proportion of the initial drug potency. The least-squares method can be seriously affected by 
outliers, leading to erroneous shelf-life estimates. In this paper, an alternative method, based on minimizing the sum of 
absolute deviations. was aoolied to the shelf-life determination problem. The resistance of these 15, based estimates to 
outliers was demonstrated king a typical stability dataset. 
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Introduction 

When the usual assumptions of normality and 
independence for the residuals hold, and out- 
liers are not present, the classical least-squares 
methodology yields estimators that are optimal 
under many criteria. It is well established that 
alternative fitting methods such as the L, and 
the L, or Chebyshev techniques are effective 
when the usual assumptions do not hold or 
outliers are present, particularly in the 
responses [ 11. These alternative criteria are not 
often used, partly due to computational con- 
siderations and our lack of knowledge regard- 
ing their sampling properties. The techniques 
used are conceptually clear and applicable to 
linear and multiple regression models. Since 
outliers are frequently encountered in stability 
data, these robust methods are especially 
important. 

Methods 

The general linear model is: 

y = XQ + e, (1) 

where y is an n-vector of random variables, X is 
an n x m matrix of regressor variables, @ is an 
m-vector of unknown parameters and e is an n- 
vector of errors. 

The linear L,-norm estimation problem is 
characterized as: find the parameter vector b 
minimizing 

,5_ IJJi - xi & = _:_ pip. (2) 

If we let ei = ui - vi, where ui, vi 2 0, 
represent positive and negative deviations, 
respectively, the general L,-norm problem 
then becomes: 

minimize ,? (u,p + v,p) 
i=l 

(3) 

with constraints Xi jj + Ui - Vi = _Vi (4) 

and Ui, Vi ? 0 (5) 

(i= 1,. . . ,n) 

here 6 is unconstrained. 
For the cases p = 1 and p + 03, linear 

programming procedures can be used. When p 

= 2, one has the classical least-squares prob- 
lem solved using the normal equations. Un- 
constrained minimization techniques can be 
used for other values of p (which need not be 
integer). Barrodale and Roberts [2], suggested 
that the convex simplex or Newton’s method 
for p > 1, and a modified simplex method for 
0 < p < ‘1 be used. 

For the Li-norm problem, (p = 1) the linear 
programming implementation is in 2n + m 

variables with 12 constraints. In ref. 3 an 
efficient algorithm for the Li-norm problem 
has been developed that has been used in the 
supplemental SAS@ Version 5 procedure LAV 
utilized in this paper [4]. (In SAS Version 6, a 
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SAS/IML@ program can be used for L, esti- 
mation [5].) 

Results and Discussion 

For the linear model, define fi as the 
estimate of Jj such that 

& (fi) = ii1 IYi - xi el (6) 

is minimized. 
The standard error for an element of e is 

then 

SE (‘j) = X -7 (7) 

where (X’X)ii denotes the jth diagonal element 
of (X’X)-‘. The quantity X2/n is the variance of 
the median of residuals from which A is 
obtained. Unfortunately, A is unknown, and 
methods for its estimation rely on evaluation of 
the probability density function (pdf) of the 
error distribution evaluated at zero. Esti- 
mation of the pdf requires choosing boundary 
values of ordered residuals, the selection of 
which can greatly affect the standard errors [6]. 
Thus, bootstrap methods [7] will be used to 
estimate the standard errors of the parameters. 

The fitted regression line is: 

To illustrate the methodology, the stability 
data in Table 1 was analysed using least- 
squares and L, techniques. In Table 1, the x 
values are storage times in months, and the y 
values represent product strength. These are 
real stability data exhibiting a pattern con- 
sistent with good stability, but high assay 
variability. Factors such as dosage form should 
not affect the results. The regression results are 
shown in Table 2, and indicate a substantially 
lower shelf-life from the L, analysis. The least- 
squares analysis seems affected much more 
than the L, analysis by the nonmonotonicity of 
the decreasing trend over time, shifting the 
least-squares line upwards. 

Table 1 
Stability dataset 

9i = 00 + P* xi, (8) 

where ji represent the fitted responses, fiO is 
the estimated intercept, and & is the esti- 
mated slope. 

The shelf-life is then: 

X Y 

0 0.3000 
3 0.3003 
6 0.3062 

12 0.2930 
18 0.3092 
24 0.2760 
30 0.2840 
36 0.2890 

shelf-life = (Y - BO)&, (9) 

where y is the minimum acceptable potency. 
Higher order polynomials are sometimes 

employed to model the potency versus time 
relationship. The methods described above are 
applicable in those cases, and shelf-life would 
then be determined using standard root-finding 
methods. In certain cases, a nonlinear (in the 
parameters) model is the most appropriate, 
and related methods, described below, can be 
used. 

When a nonlinear regression model is used, 
nonlinear programming methods are used to 
solve the L1-norm problem. Sequential 
quadratic programming [8], Levenberg- 
Marquardt methods [9], and unconstrained 
minimization methods [lo] are most often 
used, though currently available algorithms 
tend to converge slowly [ll]. 

When the regression relationship is well 
determined, confidence bands around the line 
or curve can be used to determine shelf-life or 
expiration date. When the line or curve is not 
well estimated, as in the least-squares case with 
outliers or a large variability in response, the 
confidence bands can be very wide or oddly 
shaped rendering them meaningless for in- 

Table 2 
Comparison of regression methods 

Parameter estimate Least-squares (SE) LI (SE)* 

intercept, PO 0.303414 (0.005592) 0.302111 (0.005812) 
slope, P, -0.0005397 (0.0002760) -0.ooo6o37 (0.0002864) 
shelf-lifet 61.9 months 53.2 months 

*Bootstrap standard errors based on B = 2000 replications. 
t For a minimum acceptable assay value of 0.27. 
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ferential purposes [12, 131. In these cases, a 
robust method such as L, can be used, and the 
shelf-life determined from the fit of the appro- 
priate model. Model selection is an important 
issue, in [13] it is clearly demonstrated that 
segmented, nonlinear, and polynomial models 
can accurately characterize stability profiles. 
Either L, or least-squares methods can be used 
to estimate the fits of these models, with shelf- 
life obtained directly from the curve. 

For issues involving the pooling of multiple 
batches, analysis of covariance models to test 
the equality of batch lines are often used. If 
pooling is not allowed (batch lines unequal), 
then the most conservative estimate of shelf- 
life among the batches is taken to give the 
overall shelf-life. L, techniques for analysis of 
variance and covariance can be used for these 
procedures [ 141. 

Since stability data often have unusual 
observations, including those that do not 
follow the overall trend, it is especially import- 
ant to use a method that is resistant to outliers. 
Since the L, and other robust techniques are 
becoming increasingly available, their use in 
stability studies can be expected to grow. 
Robust methods are usually more com- 
putationally intensive than conventional 
methods. With modern computational facil- 
ities, this should be a minor factor in the 
application of the methodology. 
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